105 research outputs found

    Distributed interpolatory algorithms for set membership estimation

    Get PDF
    This work addresses the distributed estimation problem in a set membership framework. The agents of a network collect measurements which are affected by bounded errors, thus implying that the unknown parameters to be estimated belong to a suitable feasible set. Two distributed algorithms are considered, based on projections of the estimate of each agent onto its local feasible set. The main contribution of the paper is to show that such algorithms are asymptotic interpolatory estimators, i.e. they converge to an element of the global feasible set, under the assumption that the feasible set associated to each measurement is convex. The proposed techniques are demonstrated on a distributed linear regression estimation problem

    A Community Microgrid Architecture with an Internal Local Market

    Full text link
    This work fits in the context of community microgrids, where members of a community can exchange energy and services among themselves, without going through the usual channels of the public electricity grid. We introduce and analyze a framework to operate a community microgrid, and to share the resulting revenues and costs among its members. A market-oriented pricing of energy exchanges within the community is obtained by implementing an internal local market based on the marginal pricing scheme. The market aims at maximizing the social welfare of the community, thanks to the more efficient allocation of resources, the reduction of the peak power to be paid, and the increased amount of reserve, achieved at an aggregate level. A community microgrid operator, acting as a benevolent planner, redistributes revenues and costs among the members, in such a way that the solution achieved by each member within the community is not worse than the solution it would achieve by acting individually. In this way, each member is incentivized to participate in the community on a voluntary basis. The overall framework is formulated in the form of a bilevel model, where the lower level problem clears the market, while the upper level problem plays the role of the community microgrid operator. Numerical results obtained on a real test case implemented in Belgium show around 54% cost savings on a yearly scale for the community, as compared to the case when its members act individually.Comment: 16 pages, 15 figure

    A New Approach to Electricity Market Clearing With Uniform Purchase Price and Curtailable Block Orders

    Full text link
    The European market clearing problem is characterized by a set of heterogeneous orders and rules that force the implementation of heuristic and iterative solving methods. In particular, curtailable block orders and the uniform purchase price (UPP) pose serious difficulties. A block is an order that spans over multiple hours, and can be either fully accepted or fully rejected. The UPP prescribes that all consumers pay a common price, i.e., the UPP, in all the zones, while producers receive zonal prices, which can differ from one zone to another. The market clearing problem in the presence of both the UPP and block orders is a major open issue in the European context. The UPP scheme leads to a non-linear optimization problem involving both primal and dual variables, whereas block orders introduce multi-temporal constraints and binary variables into the problem. As a consequence, the market clearing problem in the presence of both blocks and the UPP can be regarded as a non-linear integer programming problem involving both primal and dual variables with complementary and multi-temporal constraints. The aim of this paper is to present a non-iterative and heuristic-free approach for solving the market clearing problem in the presence of both curtailable block orders and the UPP. The solution is exact, with no approximation up to the level of resolution of current market data. By resorting to an equivalent UPP formulation, the proposed approach results in a mixed-integer linear program, which is built starting from a non-linear integer bilevel programming problem. Numerical results using real market data are reported to show the effectiveness of the proposed approach. The model has been implemented in Python, and the code is freely available on a public repository.Comment: 15 pages, 7 figure

    A Distributed Asynchronous Method of Multipliers for Constrained Nonconvex Optimization

    Get PDF
    This paper presents a fully asynchronous and distributed approach for tackling optimization problems in which both the objective function and the constraints may be nonconvex. In the considered network setting each node is active upon triggering of a local timer and has access only to a portion of the objective function and to a subset of the constraints. In the proposed technique, based on the method of multipliers, each node performs, when it wakes up, either a descent step on a local augmented Lagrangian or an ascent step on the local multiplier vector. Nodes realize when to switch from the descent step to the ascent one through an asynchronous distributed logic-AND, which detects when all the nodes have reached a predefined tolerance in the minimization of the augmented Lagrangian. It is shown that the resulting distributed algorithm is equivalent to a block coordinate descent for the minimization of the global augmented Lagrangian. This allows one to extend the properties of the centralized method of multipliers to the considered distributed framework. Two application examples are presented to validate the proposed approach: a distributed source localization problem and the parameter estimation of a neural network.Comment: arXiv admin note: substantial text overlap with arXiv:1803.0648

    Clinical course and management of acute and chronic viral hepatitis during pregnancy.

    Get PDF
    Pregnancy is a para-physiologic condition, which usually evolves without any complications in the majority of women, even if in some circumstances moderate or severe clinical problems can also occur. Among complications occurring during the second and the third trimester very important are those considered as concurrent to pregnancy such as hyperemesis gravidarum, intrahepatic cholestasis of pregnancy, HELLP syndrome and acute fatty liver of pregnancy. The liver diseases concurrent to pregnancy typically occur at specific times during the gestation and they may lead to significant maternal and foetal morbidity and mortality. Commonly, delivery of the foetus, even preterm, usually terminates the progression of these disorders. All chronic liver diseases, such as chronic viral hepatitis, autoimmune hepatitis, Wilson's disease, and cirrhosis of different aetiologies may cause liver damage, independently from pregnancy. In this review we will also comment the clinical implications of pregnancies occurring in women who received a orthotopic liver transplantation (OLT) Therefore, the management of immunosuppressive therapy before and after the delivery in women who received liver transplant is becoming a relevant clinical issue. Finally, we will focus on acute and chronic viral hepatitis occurring during pregnancy, on management of advanced liver disease and we will review the literature on the challenging issue regarding pregnancy and OLT

    Dynamic Performance of Mobile Haptic Interfaces

    Full text link

    ALLELIC VARIANTS OF CYP2E1 GENE IN HEPATOCARCINOMA PATIENTS AND IN HEPATIC TUMOR CELL LINES

    Get PDF
    Background and Aims: Hepatic enzyme CYP2E1 is involved in the metabolism of a number of exogenous and endogenous substances (i.e. ethanol, drugs and chemical carcinogens). Being polymorphic, CYP2E1 gene can give different xeno-metabolic capabilities in a population and it is well known that inadequate or no enzymatic deactivation of xenobiotics could induce an increased susceptibility to disease and cancer. In particular, one of the 5 -flanking region polymorphisms, able to differentiate CYP2E1 gene transcriptional activity, is caused by the appearance/disappearance of RsaI and PstI restriction sites, which generates two different alleles, namely *C1(Rsa+/Pst−) and *C2(Rsa−/Pst+) respectively, reported to be in complete linkage disequilibrium. Methods: To confirm the existence of a correlation between some particular CYP2E1 genotypes/haplotypes and hepatocarcinoma, we determined CYP2E1 PstI/RsaI genotypes/haplotypes by RFLP-PCR in a cohort of central western Sicily hepatocarcinoma patients and in a population of healthy students from the same geographic area. Results: In hepatocarcinoma patients, modal genotype association was Rsa++/Pst−−, corresponding to CYP2E1 *C1/*C1 haplotype, whereas the Rsa+−/Pst−+ association, equivalent to CYP2E1 *C1/*C2 haplotype, resulted to have the lowest frequency both in patients and in controls. Moreover, both in patients and in controls, noncanonical genotype associations were frequent and arose from a no-linkage disequilibrium between the two polymorphic sites. Other authors reported this finding as a rare occurrence. Thus, from analysis of only one restriction site, Rsa++ genotype was approximately 1.5-fold more frequent in patients than in controls, and the non-canonical Rsa+− genotype was found relatively frequent in patients. Moreover, HuH7 and HA22T transformed hepatocarcinoma cell lines also showed the Rsa+− genotype. Conclusions: These results suggest that the presence in CYP2E1 genotype of at least one allele with an Rsa I restriction site is correlated with hepatocarcinoma. As this site is known a consensus sequence for some specific CYP gene transcription factors, like HNF-1, it may be supposed that a single nucleotide polymorphism can alter the possibility of HNF-1 to bind CYP2E1 promoter. This could determine a marked change in the transcriptional activity of the gene, incompetence in xenobiotic metabolism or in toxic substance deactivation and an increased susceptibility to neoplastic diseases, such as hepatocarcinoma

    Walking ahead: the headed social force model

    Get PDF
    Human motion models are finding an increasing number of novel applications in many different fields, such as building design, computer graphics and robot motion planning. The Social Force Model is one of the most popular alternatives to describe the motion of pedestrians. By resorting to a physical analogy, individuals are assimilated to point-wise particles subject to social forces which drive their dynamics. Such a model implicitly assumes that humans move isotropically. On the contrary, empirical evidence shows that people do have a preferred direction of motion, walking forward most of the time. Lateral motions are observed only in specific circumstances, such as when navigating in overcrowded environments or avoiding unexpected obstacles. In this paper, the Headed Social Force Model is introduced in order to improve the realism of the trajectories generated by the classical Social Force Model. The key feature of the proposed approach is the inclusion of the pedestrians' heading into the dynamic model used to describe the motion of each individual. The force and torque representing the model inputs are computed as suitable functions of the force terms resulting from the traditional Social Force Model. Moreover, a new force contribution is introduced in order to model the behavior of people walking together as a single group. The proposed model features high versatility, being able to reproduce both the unicycle-like trajectories typical of people moving in open spaces and the point-wise motion patterns occurring in high density scenarios. Extensive numerical simulations show an increased regularity of the resulting trajectories and confirm a general improvement of the model realism
    • …
    corecore